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Kinetic temperatures for a granular mixture
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An isolated mixture of smooth, inelastic hard spheres supports a homogeneous cooling state with different
kinetic temperatures for each species. This phenomenon is explored here by molecular dynamics simulation of
a two component fluid, with comparison to predictions of the Enskog kinetic theory. The ratio of kinetic
temperatures is studied for two values of the restitution coefficien0.95 and 0.80, as a function of mass
ratio, size ratio, composition, and density. Good agreement between theory and simulation is found for the
lower densities and higher restitution coefficient; significant disagreement is observed otherwise. The phenom-
enon of different temperatures is also discussed for driven systems, as occurs in recent experiments. Differ-
ences between the freely cooling state and driven steady states are illustrated.
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[. INTRODUCTION mechanical properties and state conditions is found to be in
good agreement with predictions of the Enskog kinetic
The dissipative nature of granular media is captured by atheory, except at high density and strong dissipation. In the
idealized fluid of smooth, inelastic hard spheres. When isolatter case, significant quantitative deviations from the Ens-
lated and homogenized such a system rapidly approacheskag theory are observed but the concept of a HCS and two
homogeneous cooling statilCS) for which all time depen- temperatures is preservé@l.
dence of the distribution function occurs through the tem- The HCS can be given a time independent representation
perature. The latter, defined in the usual way via the averagey transformation to suitable dimensionless varialji&s].
kinetic energy, decays in timgcooling” ) due to the inelas- In this form, it is similar to the steady state obtained for
tic collisions. The existence of the HCS and associated coohomogeneously drivegranular fluids. The latter are obtained
ing rate is well established for a one-component system by adding stochastic sources to the kinetic equation or MD
theory [1], Monte Carlo simulatiorf2], and molecular dy- dynamics to do work on the system that compensates for the
namics simulatiof3]. Recently, it has been shown from the collisional cooling. The resulting homogeneous steady state
Enskog kinetic theory that a mixture of inelastic hard spheress qualitatively the same as the dimensionless HCS, but the
also has a HCS under the same conditighsThe condition  quantitative differences are expected to make it closéo-to
that all time dependence occurs through the temperature really driven steady states observed in experiments on vi-
quires that the cooling rates for the kinetic temperatures fobrated granular media. Studies of driven states have been
each species must be the same. It follows directly that thextended to mixtures both theoreticall§] and experimen-
kinetic temperatures are different for mechanically differenttally [10,11). The comparisons of the temperature ratio for
species, reflecting a violation of the equipartition theorenthe HCS mixture and that for the two types of homoge-
valid for elastic collisions. A prediction for the ratio of tem- neously driven mixtures are given below. Their relationship
peratures in a binary mixture as a function of mass ratio, sizéo a locally driven system is also discussed.
ratio, composition, density, and restitution coefficients was The plan of the paper is as follows. In Sec. Il, we show
obtained from an approximate solution to the Enskog equathat the Liouville equation for a binary granular mixture sup-
tions. The accuracy of this approximate result has been reports a scaling solution describing the HCS. A transformation
cently confirmed by Monte Carlo simulation of the Enskogto dimensionless variables allows to get {lgenstank tem-
equationg5]. perature ratioy=T(t)/T,(t) in terms of the parameters of
The objective here is to demonstrate the phenomenon of the mixture. An approximate evaluation of the temperature
HCS and two temperatures in a broader context by moleculamtio can be made from the Enskog kinetic theory, as is
dynamics(MD) simulation for a binary mixture of inelastic shown in Sec. Ill. In Sec. IV, the Enskog predictions are
hard spheres. MD simulation avoids any assumptions inheicompared with those obtained from MD simulations. Such a
ent in the kinetic theory or approximations made in solvingcomparison shows a quite good agreement for the lower den-
the kinetic equations. It is shown here that MD simulationsities considered, but significant discrepancies between the
supports the existence of a HCS for mixtures with differenttheory and the simulation appear for high density and strong
kinetic temperatures for each species but with a commoulissipation. The existence of two temperatures in driven
cooling rate. The dependence of the temperature ratio ogranular mixture$9,12,13 and its possible connection with
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recent experiments is analyzed in Sec. V. Finally, the papef(t) associated with the total kinetic energy, and the partial
ends in Sec. VI with a brief discussion on the relevance otemperaturesT;(t) associated with the kinetic energies of
the results presented here. each species. They are defined as

[l. HOMOGENEOUS COOLING STATE FOR A MIXTURE 2 3 Niq

o _ T()=2 xTi(t), SNT={ 2 Smogit). (1)

The system considered is a binary mixtureNof and N, =1 =1

smooth hard spheres of massesandm,, and diameters-;
and o,. In general, collisions among all pairs are inelastic The brackets denote a phase space average over the state of
and are characterized by three constant restitution coeffthe system at time¢ andx;=N;/N is the composition. The
cientsa;; , which can be different for the three types of pair time dependence of(t) and T(t) follows from the Liou-
collisions. The state of the system at tilrie specified by the  Ville equation that give$4,14,13
N=N;+ N, particle phase space denspyl',t), which is a
solution to the Liouville equatiof14]. In all of the follow- T l9T==¢ T 'oTi=—4¢, (2
ing, attention is restricted to spatially homogeneous states. In
this section, it is further assumed that the system is isolatedvhere¢; is the cooling rate associated with the partial tem-
The properties of primary interest are the overall temperaturperatureT; and{ is the total cooling rate. They are given by

2

1
§=f2 X T, 3

=1

2

m; _

{i=— 3n-IT- Jz:l f dVlvif def drlZTij(r121V11V2)fi(j2)(r121V11V2yt)- (4)
[ I

Here, n; is the number density of speciésr,, is the relative position of the two particles, alhﬁﬁ)(rlz,vl,vz,t) are the
reduced two-particle distribution functions for a particle of ty@med one of typg, obtained fromp(I',t) by integrating over
degrees of freedom for all other particles. The binary collision operators are defirjdd by

Tyt =of [ 4o 006095 0l 2011 @b o1zt ), ©

whereo; = (o;+ 0})/2, o is a unit vector directed along the For a system with elastic collisiong(I',t) rapidly ap-
line of centers from the sphere of specids that of species Proaches to the Gibbs distribution with a single constant tem-
j at contact,® is the Heaviside step function, amg,=v, Perature. This requires = {,, andT;T in the Gibbs state.
—V,. Also, bﬁl is a substituting operatorbile(glz) The form of the velocity distribution functions and the con-
ZF(leglz), which changes any function of andv, to stancy of the temperature then givés=T,=T and {;

the same function of the restituting velocities and v, : ={,=0. This equality of the temperatures is the equiparti-
tion theorem for classical statistical mechanics. The vanish-

. . ing of the cooling rates is a consequence of the system ap-
vi=vi—uji(1+a; ) (o g o, proaching towards a steady state.

If the collisions are inelastic, the system still approaches
rapidly a special state known as the HCS. As with the Gibbs
state, the velocities scale with the temperature for a dimen-
sionless universal distribution of the form

V=Vo+ pij(1+ a;; (0 g 0, (6)

where;; =m; /(m;+m;). Upon writing Egs(4) and(5) we
have taken into account that for an homogeneous system the prcs T ) =[7v ()] Npficd{rf Vi D. (8)
spatial dependence 6f; occurs only througft .

In general, all three temperatures and associated coolingere r =r;;// denotes the dimensionless relative coordi-
rates will be different and depend on the initial preparationnate for particles andj, and/ is some appropriate charac-
The time evolution of the ratio of the two partial tempera- teristic length scale such as the mean free path. The dimen-
turesy(t) =Ty (t)/T(t) follows from the second equality of sjonless velocities v* =v;/v,(t) are scaled relative
Eq. (2: to the thermal velocity defined by v(t)

=/2T(t)(m;+m,)/m;m,. This scaling has the same con-

dlny=¢,— . (7) sequences as described above for elastic collisiong)
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5.5 y y y - T - - y T using 1000 particles of the same size and composition, but
with the mass ration; /m,=8. The total solid volume frac-
a5t | tion is ¢=0.1 and all coefficients of restitution are equal.

Here, = ¢+ ¢5, Where

1 3
o =5 ™o (9)
is the species volume fraction of the componint/e con-
sider two values of the restitution coefficient=0.8 and«
=1. We observe that in the elastic cage=1) the mixture
approaches the Gibbs state with the temperature rdtip
—1, as expected from equipartition. In the inelastic case
0 20 40 60 8 100 120 140 160 180 200 (a«=0.8), y(t) approaches a constant valug=2 with fluc-
collisions/particle tuations less than 5&fter about 10 collisions per particle. It
is seen that the HCS for inelastic collisions is approached on
FIG. 1. Time evolution of y(t)=Ty(t)/Ty(t) for #=0.1,  the same time scale as the Gibbs state for elastic collisions.

01/g2—¢1/¢’2—1 m, /m,=8, and two values o&: a=0.8 and  Fther details of the MD simulation are discussed below.
o

0.5 L 2 L L L L L L L

Ill. ENSKOG KINETIC THEORY

«T(t), y(t)—const, and sd;= {,. However, Eq(8) is not a
steady state .since the cooling rafeslo noF vanish. Also, the in an equivalent form in terms of the one-particle reduced
form of p}cgis not the same as for the Gibbs state so there i ISlistribution functionfM(v,t) as
no a priori reason to expect that the temperatures should be
equal[4]. In fact, as indicated below, they are equal only in m; 2¢(1)
the limit of mechanically equivalent particles or elastic col- Ti(t)= 3 n_. f dvofi(v,1). (10
lisions.

The simplest test of the evolution towards a HCS with theThe one-particle reduced distribution functioﬁl)(v,t)
assumed velocity scaling is the approachyff) to a con- obeys the exact first Bogoliubov-Born-Green-Kirkwood-
stant value. This is illustrated in Fig. 1 from MD simulation Yvon (BBGKY) hierarchy equations

The kinetic temperatures defined by Ef) can be given

2
ﬁtfi(l)(vlvt):jzl def drlz?ij(rlZ:Vl1V2)fi(j2)(r121V11V21t)- (13)

To be more specific about the dependence of the temper&éons can be determined by using this same approximation in
tures on the parameters of the mixture, it is sufficient tothe exact first BBGKY hierarchy equations, which becomes
specify the reduced distribution functiorﬁﬁz)(rlz,vl,vz,t)

in Eq. (11). This also determines the cooling rates from Eq.
(4). '(Iq'h(es?a distribution functions occur only?n the combing- % fi(l)(vl*t):gfl Jij[V1|fi(1)(t)'f§l)(t)]' (13
tion T;;f?), so knowledge of ?) is required only for pairs

of particles at contact and only on the precollision hemi-where J;[f{",f{!)] is the Enskog collision operatda4].
sphere. A practical approximation for these conditions is obThese are now closed equations oV and constitute the
tained by neglecting velocity correlations and expressing thg&nskog kinetic theory for the granular binary mixture.

two-particle distribution functions in terms of the single-  For the HCS the scaling forit8) implies a similar scaling
particle distribution functions, form for f(vy 1),

2

Wy 1) = nor =304V F5 (1%
F(r12,v1,2,0) = (v, D FB (v, 1) xij (r12,1). P =g (O (7). 4

12 . .
(12) Furthermore ;;(r1,= ajj ,t) — x;j=const since all time de-

pendence occurs through the velocity scaling. For practical
The single-particle distributions are independent of positiorpurposes, and to agree with the equilibrium limit for elastic
since only homogeneous states are considered here. The spaflisions, y;; is taken to be the equilibrium pair correlation
tial correlation functiony;; (r1,,t) is evaluated at contact and function. A good approximation is given by the Carnahan-
its choice is given below. The one-particle distribution func-Starling form[16]
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1=d 21-¢)? oy

& oo\ 2 followed. First, the solution is represented as a series in ve-
i9]

=g locity polynomials, with the leading terms given by

(15 A\ 32 15
fi*(v*)—>(—') e No*4—BN\p* 24 — }

where £=m(njo2+n,05)/6. Comparison with computer ™ 4

simulations for binary molecular hard sphere mixtures have (21)

shown that the Carnahan-Starling equatib®) is accurate in

L
E o-ij

1+4

. ) L i .. Thus, the weight functiofGaussiapfor each species is cho-
modstf of Ithe ﬂlé'.d region, alltgc;ugg.n faHilfor rlngh denS|_t(|jes sen to be scaled relative to the thermal velocity for that spe-
and for large diameter ratidd.7]. Given the values consid- a5 “introducing explicitly the unknown species tempera-

ered in our simulations, we expect that the approxma’uoqures The coefficients; measure the deviation df from

(15 turns out to be quite accurate to evaluate the pair COM€he chosen reference Gaussians. The cooling rates are now
lation functionyg; . In terms of the reduced distributio¥ ,

A . calculated as explicit functions of; andc; from Eg. (17).
the Enskog kinetic equations become With these known, the Enskog equations can be solved to
determinec; as functions of\; by substitution of Eq(21)
gz' (V< )= E JELVEIEE LB, (16  into the Enskog quations, taking toé moment of.tho'se
av* equations, and retaining terms up through lineac;in Fi-
nally, the\; are determined from the consistency condition
whereZt = ¢ /nvgod, anddf =(vg/inniod)J;; are given, re-  for the HCS,* =¢% . The detailed results for, and\, as
spectively, by functions of the fluid parameters are given in Réf. and
[5] and will not be repeated here.
G f1=- x E dvioJ5LEFL 7], (D)
IV. COMPARISON OF THEORY AND SIMULATION

The approximation(21) provides detailed predictions for
ot lff f7 1= XJX.J( ) fdvzfdﬂ' 0 (o g}y the species temperatures as functions of the mass ratio,
size ratio, composition, density, and restitution coefficients.
x(&.gfz)[aHZfr(v )f] *(04%) The quality of this approximate_ solution to_the Enskog equa-
tions has been recently confirmed by direct Monte Carlo
—fF D (v3)], (18  simulation of those equations over a wide range of the

parameter spacd5]. Specifically, the parameter space
whereg;,=01,/vo, )\i=(v0/v0i)2=T/(Ti,u,-i), with j#1i, IS over which the solution(21) has been verified is the mass
the square of the ratio of the thermal velocity to that forratio m,/m,, the concentration ratia, /n,, the ratio of di-
specied, andvg; = 2T;/m;. ameterso, /o5, the reduced densimafz, and the(com-

In the dimensionless forrfil6) the Enskog equations are mon) restitution coefficienta= a;=ay,=a;,. However,
time independent. The pair of coupled equatioh§) must  uncertainties remain regarding the accuracy of the Enskog
be solved self-consistently with the expressions for the coolequations themselves. An appropriate means to study the
ing rates in Eq(4) to determinef and {7 =¢5=¢*. The concept of the HCS and the associated different partial tem-
temperaturer (t) is then obtained from the known cooling peratures, as well as to study the domain of validity of the
rate by solving the first of Eq$2), and the distribution func- Enskog kinetic theory is via MD simulations. Since the pa-
tionsfi(l)(v,t) are fully determined. The kinetic temperature rameter space here is quite large the tests of the theory and
for each species is obtained from E6) as concepts are quite stringent.

Two different values of the solid volume fractiogshave
been considered heregy=0.1 and¢$= 0.2, both representing
a moderately dense fluid. All coefficients of restitution were
set equal and two values considereds 0.8 anda=0.95,

As anticipated,T;(t)T(t) in the HCS andy=T,/T, be-  both representing moderately strong dissipation. The tem-
comes perature ratioy in the HCS has been studied for three cases
in each state. In the first cagease ) v is determined as a
J dv* o * 262 (u*) function of the mass raticmllm_z for 01/02=¢>_1/¢2=1.
(20) The second cas@ease 1) determinesy as a function of size
ratio o4 /o, for my/my,=¢,/¢h,=1, while the third case
(case Il) determinesy as a function of compositiogh, / ¢,
for my/m,=8 ando/o,=2
This is essentially the approach used in the numerical Monte The granular system under consideration does not contain
Carlo solution[5] to the Enskog equation. external force fields, and thus the particles travel in straight-

In practice, only approximate solutions for the HCS areline trajectories between collisions. Correspondingly, an
possible (an exception is a recent exact result for a one-event-driven algorithm is employed in the MD simulations.
dimensional Maxwell modglL8]) and a different approach is The simulated particles are modeled as inelastic, frictionless

Ti(t)= Tt) M J’dv*v*zf*(v) (19

_ M2
M21 '
f dv* vu*2f5 (v*)
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. FIG. 3. Plot of the temperature rafio, /T, as a function of the
FIG. 2 Plot of the temperature ratio /T, as a fgnctlon ofthe ¢jze ratioo, /o, for my /my= ¢, /=1, and two different values
mass ratian, /m, for o1 /a,= ¢, /¢$,=1, and two different values ¢ . =0.95 (lines and circlesand &= 0.8 (lines and triangles

of a: @=0.95(solid line and circlesand «=0.8 (solid line and  Thg |ines are the Enskog predictions and the symbols refer to the
triangleg. The lines are the Enskog predictions and the symbolsyp simulation results. The soliddashedl lines correspond tap

refer to the MD simulation results. The opésolid) symbols corre-  _ ¢ (¢=0.2), while the oper(solid) symbols correspond te
spond to¢p=0.1 (¢=0.2). =0.1 (¢=0.2).

hard spheregi.e., collisions are both binary and instanta- the circles are forw=0.95 and the triangles are for=0.8.
neo_u3_moving in_a three-o_lim_ensional space \_N_ith standarqn addition, open(solid) symbols correspond tg=0.1 (¢
penodlc_bo_undarles. The initial particle velocities are uni-—0.2). The simulation values reported represent the average
formly distributed about a zero mean, regardless of the pafom three identical simulations, with a standard deviation
ticle size. These velocities are then adjusted to ensure th%}pically less than 3%. The Enskog prediction of the preced-
the net system momentum is zero. ing section is given by the solid lindshe theory does not

As indicated in Fig. 1, the system reaches a steady Va'“ﬁredict any dependence af in this casg The agreement

for the temperature ratig' within 10 collisions per particle petween the theory and the simulation is seen to be quite
for a wide class of initial conditions. However, it is known 4,4 ata=0.95, over the whole range of mass ratios. The

that the HCS is unstable to long wavelength perturbations S8greement is also quite good @t=0.8 and$=0.1. How-

that spontaneous deviations from the HCS occur at longyer, systematic deviations from the Enskog theory for large
times. To assure thatis measured in the HCS, the tempera- 1455 ratios are obtained in the simulationghat0.2.

ture T(t) is monitored as a function of time to determine if Figure 3 shows the results for case #1as a function of
the predicted cooling from the scaling fori@) (Haff's law)  gjze ratio. The notation is the same as in Fig. 2, where now
is maintained 19]. In order to keep the computational time 6 soliq line refers tap=0.1 while the dashed line is for
reasonable for each of the simulatiofadout 1 h, the total #=0.2. The agreement for both=0.95 ande=0.8 is quite
number of particles was kept constantNi=1000 for all good at¢=0.1, except for the largest size ratio @t 0.8.
simulations. Data from the first 10 collisions per partide 11 density dependence of the theory is weaker than that
10000 total collisionswere used to determine the slope of fom the simulation, and large differences are observed at
T(t). Specifically, the IAT(t)/T(0)] was sampled 1000 times ,_q >

during this initial portion of the simulation. Somewhat sur- Figure 4 shows the results for case Hlas a function of
prisingly, a smooth linear decrease ifT(t)/T(0)] was ob-  composition. We observe that both the theory and the simu-
served throughout the 1000 samples, and a linear regressigiion, predict a very weak influence of composition on the
analysis was employed to evaluate the slope of the Haff'gemperature ratio. In addition, the trends are similar to those
law plot. Following evaluation of the slope ofI()/T(0)],  of Figs. 2 and 3. Good agreement is obtainedder0.95 at
collection of they=T,(t)/T,(t) data commenced. This data i, $#=0.1 and$=0.2. At stronger dissipation there is a

collection period involved as many as 200 additional colli-gyrong density dependence in the simulation that is not repro-
sions per particle(or 200000 total collisionsincluding  §,,ceq by the theory.

50000 equally spaced measurementsyofThe phrase “as
many as” refers to the fact that the data collection would
cease(with fewer than 50 000 measurements of the energy
ratio) if the measured value of [(t)/T(0)] deviated from the The existence and details of different temperatures for
expected value of [T(t)/T(0)] by more than 5%. Violation each species in a HCS is now well established by kinetic
of the Haff's law restriction occurred frequently when the theory and simulation. The related experimefrit8,11] and
mass ratiom;/m, was greater than 4. Additionally, simula- simulations[12,13 on driven steady states also show differ-
tions of equal mass particlem /m,=1) violated the Haff's  ent temperatures, but the detailed dependence on the control
law restriction whem=0.8 and¢=0.2. parameters appears to be different. The driven steady states
Figure 2 shows the results for caseyl,as a function of are achieved from external forces that do work at the same
mass ratio. The symbols represent the simulation data wherate as collisional cooling. In the experiments this is accom-

V. DRIVEN SYSTEMS AND EXPERIMENTS
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4,19,
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FIG. 4. Plot of the temperature ratib, /T, as a function of FIG. 5. Plot of the temperature rafio, /T, as a function of the

compositiong, /¢, for m; /m,=8, o, /Wo,=2, and two different oo atian /m, for =0, oy /o,= b,/ d,=1, and two different
values ofa: «=0.95 (lines and circlesand «=0.8 (lines and o5 o0 =0.8 anda=0.6. The solid lines are the results for

triangles. The "”‘?S are_ the Enskog predictions an_d the SymbOIS[he HCS, while the dashed lines are the results for the driven steady
refer to the MD simulation results. The solidashedl lines corre- state achieved from the stochastic thermostat

spond to¢p=0.1 (¢=0.2), while the oper{solid) symbols corre-

spond t0$=0.1 (¢=0.2). Note that the covariance for the random accelerations is

taken to be the same for each sped¢i@23). This force in-
plished by vibrating the system so that it is locally driven atduces a diffusion in the velocity space, with diffusion coef-
the walls. Far from these walls a steady state is studieficient D. At the level of kinetic theory this leads to an addi-
whose properties are presumed to be insensitive to the detati®nal source represented by a Fokker-Planck collision
of the driving forces. The velocities of the particles can beoperator, in addition to the Enskog collision operator. The
measured using high speed photograph@] or positron steady state Enskog equations then take the form
emission particle trackinfgl1]. The objective of this section
is to explore similarities and differences between the tem- 0=> J,[v[f® fD]+D
perature ratios for a binary mixture in the HCS and in a T CUET
driven steady state.

As a first analysis, &omogeneouslgiriven steady state is  Multiplying by mivflz and integrating gives the relationship
considered. This does not correspond directly to any experief D to the cooling rateg;, i.e.,D=¢;T;/2m;. This in turn
mental driving source, but has been considered extensiveiynplies the steady state condition
as a representation of driven systems for the one-component
fluid [20]. In this case a uniform external nonconservative T, T
force, frequently referred to as a “thermostat,” is applied to §1m—l— ’m,’
compensate for collisional cooling. Two types of thermostats
are considered here. One is a deterministic Gaussian thermdhe cooling rates are no longer equal, as for the HCS, and
stat widely used in nonequilibrium molecular dynamicsthe dependence of the temperatures on the control parameters
simulation for the molecular fluid21]. The force is similar  will be different as well.
to a Stokes law drag force, linear in the velocity, but with the  The procedure for determining the temperatures for the
opposite sign so that it heats rather than cools the systerstochastically driven steady state is the same as that de-
The “friction” constant can be chosen to exactly compensatescribed in Sec. Ill. The steady state distribution is repre-
for the collisional cooling. At the level of kinetic theory, the sented as an expansion of the fof#1) and the coefficients
introduction of such an external force leads to a steady statere now determined from moments of the &8). The cool-
equation that isdentical to Eq. (16). It is easily confirmed ing rates are then determined from this solution using Eq.
that the same is true at the level of the Liouville equation in(17), and the conditior(24) gives an equation for the tem-
the appropriate dimensionless variables. Thus, there is gperature ratioy. Figures 5, 6, and 7 illustrate the differences
exact correspondence between the HCS and this type dfetween the HCS and the stochastic steady state 00.6
driven steady state and, in particular, the dependengeosf  and 0.8. The solid lines are the results for the HCS, while the
the control parameters is the same. dashed lines are the results for the driven steady state. The

A second method of driving the system homogeneously islependence of on mass ratio is shown in Fig. 5 fes=0
by means of a stochastic Langevin force representing Gausand ¢,/ ¢,=o,/0,=1. This dependence is seen to be con-
ian white noisg22]. This force for each species is written as siderably stronger in the driven state. The dependence on
Fi=m;&, where the covariance of the stochastic acceleracomposition is shown in Fig. 6 fop=0, m;/m,=2, and
tion is o1la,=1. Finally, the dependence on overall packing frac-

tion ¢ is shown in Fig. 7 for¢,/¢$,=1 and m;/m,
=o,/0,=2. In this last case, the effect of increased density
(&ia(D)€jp(t"))=2D & 8,50(t—t"). (22 is greater for the HCS than for the driven steady state.

2
HON (23

J
Jv

(24)
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15 T T T VI. DISCUSSION
____________________________________________ The primary results of this study are twofold. First, the
14} MD simulations confirm the rapid approach to a HCS with
= 06 two kinetic temperatures determined by a common cooling
S e | rate. This occurs over a wide range of densities, composition,

and mass and size ratios, for both moderate and strong dis-
________________________________________________________ sipation. The second result is confirmation of the Enskog
12 iy kinetic theory to provide a quantitative description of this
=038 phenomenon for the lower densities and weaker dissipation
L1 1 : L cases. This includes densities well outside the Boltzmann

! limit and applies throughout the parameter space of mechani-
cal properties. The analysis here is a test of the Enskog pre-

FIG. 6. Plot of the temperature ratib, /T, as a function of  diction for the cooling rates, which are essentially transport
compositiong, / ¢, for =0, m;/m,=2, o, /0,=1, and two dif-  properties(collision rate$. The good agreement obtained is
ferent values ofa: @=0.8 anda=0.6. The solid lines are the further testimony to the utility of this remarkable equation
results for the HCS, while the dashed lines are the results for théor fluids with elastic and inelastic collisions, including mix-
driven steady state achieved from the stochastic thermostat. tures.

The failure of the Enskog theory at high densities is ex-

The HCS and homogeneously driven steady states atgcieq from experience with normal fluids. This is due to
seen to be qualitatively similar, with only quantitative differ- multiparticle collisions, including recollision eventsing

ences. It remains to understand their relationship to Iocal%ollisions). The latter are expected to be stronger for fluids

driven wall f_°f095- An exampl_e Is described for the BOltZ'.With inelastic collisions where the colliding pairs tend to
mann equation in the Appendix. There the boundary condis

tion is a sawtooth vibration of one wall such that every par_become more focused. It appears tha_t the range of de'n5|.t|es
ticle encountering the wall has a reflected speed increased l; r Wh'Ch t'he.Engkog dgsgrlptlon applies decreases with in-
twice the velocity of the wall in the component normal to the reasing dissipation. Th'_s IS _the case qbserved here ?“?d also
wall. The steady state condition is considerably more com€!Sewhere for the self-diffusion coefficief8]. The specific
plex than for the HCS or the homogeneously driven steadj’€chanism responsible for the large discrepancies at high
states. In the limit that the wall velocity is large compared todensities and its quantitative prediction remains an open
the thermal velocities of each species, the condited) is ~ Problem.

recovered. This suggests that the results obtained from this The magnitude of the difference between the two kinetic
condition are plausible first approximations for qualitativetemperatures generally increases as the mechanical differ-
comparisons with experimental resuleJ. However, the de- ences increase, although the dependence on volume fraction
tailed nature of the driven state requires further characterizas weak. Also, there is a significant dependence on the inelas-
tion before quantitative conclusions can be drawn. This igicity and total volume fraction. The experiments in Rd0]
suggested by the study of a driven state in the absence ghow a similar strong dependence on mass ratio, but no sig-
gravity [24] where the system is found to be well describednificant dependence on inelasticity, total density, or compo-
by hydrodynamics away from the wall, but the steady state isition. The detailed correspondence between the simple
strongly inhomogeneous. model homogeneous states considered here and the locally
driven states of experiments needs refinement, although gen-

1o S ' ' erally the same trends are obsery&d
e The hydrodynamics for binary mixtures of inelastic hard
s [ .= S~ e spheres has been derived recently, including the effects of
g T TNg=08 T two kinetic temperature$25]. Although only the overall
2 ool temperature associated with both species serves as a hydro-
§ a=0.6—"""- dynamic field, the transport coefficients depend on the tem-
perature ratioy. Since the latter is a function of the compo-
sition and density, there are additional contributions to the
transport coefficients. Differences as large as 50% are found
090 ' 1 L for some coefficients.
0.0 0.1 02 03 04
¢
FIG. 7. Plot of the relative temperature rati¢«a, ¢)/ y(«,0) as ACKNOWLEDGMENTS
a function of the total solid volume fractiorp for m;/m,
=o,l0,=2, ¢,/¢,=1, and two different values of: @=0.8 S.R.D. is grateful for the support provided by the National

and #=0.6. The solid lines are the results for the HCS, while theScience Foundation Graduate Program. V.G. acknowledges
dashed lines are the results for the driven steady state achieved fropartial support from the Ministerio de Ciencia y Tecnobogi
the stochastic thermostat. (Spain through Grant No. BFM2001-0718.

041301-7



DAHL, HRENYA, GARZé, AND DUFTY PHYSICAL REVIEW E 66, 041301 (2002

APPENDIX: LOCAL BOUNDARY CONDITIONS away from the wall, where the normalis directed toward

The Enskog equations with boundary conditions can béhe interior of the system. The kerri¢(v’,v,) characterizes
written as[26] the change in the half space velocity distributions at the sur-
face (i.e., outgoing distribution is a linear functional of the

incoming distribution. Particle number conservation re-
(v V=Tu (D vty = S 3, [t 00, (D). neoming distribution. Particle nu servat
]

quires
(A1)
Here, Tyy; describes interactions of particles of typevith f dvy P(vy,v')=0O(—n-v"). (A4)
the boundaries
As an illustration, the form oK(v,v,) for elastic specular
TWifi(l)(r,vl;t):f dss(r—s) collisions with a wall at rest is

Ks(vl,v’)=5(v1—v’+2(ﬁ~v’)ﬁ). (A5)
X

fdv’P(vl,v’)|ﬁov’|fi(1)(r,v’;t)
The surface domairE is time dependent, representing

vertical oscillations. This can be handled using a sawtooth
form for the driving, such that every particle encounters the

(A2) wall moving into the system at velocilyw=vwﬁ. Assume
the amplitude of the vibration is small, so that the displace-

This is similar to the usual Boltzmann collision operator with ment of the wall can be neglected. Then, it is reasonable to
the first term representing a gain in the population of parchoose specular collisions in the local Galillean frame for
ticles with velocityv, due to collisions with the wall, and the which the wall is at rest:
second term representing a corresponding loss. The probabil-
ity density fo_r a velocity_v1 after the collision with the wall, P(Vl,v’)=(ﬁ' (V3 =Vy))K (vy V') O (— n- (v —v,),
given an incident velocity’ has the form (A6)

—@(—n-v)|n-vy | fO(r vyt T

P(vy,V)=0(n-v)K(v;,v)O(—n-v').  (A3) K (V1) = S(vi v + 26 (v v ) A7)
s\V1s - 1 : w .

The two O functions characterize the incident particles as
directed toward the wall and the reflected particle directedrhe wall collision operator becomes

Twi f1(rvyt) = f_dsé(r—s)[(ﬁ- (vl—vw))f dv’ S(vi—V' +2n- (V' —v,)N)O (—n- (V' —V,))

XN (V' =) [FB(r, V50 = O (=R (v = v, )= (v = Vi) [ (r v st | (A8)

The change in the kinetic energy due to the boundary conditions is

1
f drfdvlzmiviTWifi(l)(r,vl;t)
= Lds f dvale/ (v1) — (D)1= (V1= V)| O (= - (vi= v, ) D5V 51), (A9)
wheree;(v,) ande/ (v,) are the kinetic energies for particles coming into and leaving the surface. They are given by
1 2
(v =5 mu7, (A10)

2
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- 1 - -
ei’(v1)=f dv@(n-(v—vW))Emivzﬁ(v—vﬁ—2n~(v1—vW)n) (A11)
1 . RS
:Emi(vl_z(n'vl_vw)n) O(=n-(vi—Vy)). (A12)
|
Thus, one gets velocities 1-n-v/v,—1, and so Eq(A14) becomes ap-
- proximately
, 5 n-vy
ei(Ul)_ei(01)=2mivw(1_v_)- (AL3)
w

1
) f drf dvlzmivaWi fO(r,vi ) —modnA,
Here,v,, is the speed of the wall, taken along the normal

(Al5)
The rate of energy change due to the wall becomes
where A is the area of the wall and; is the density of
f drf dvl mvaTwi fFU(r,vy;t) incident particles of species The rate of change of the
2 temperature is then
2 3fd (1 nvl)z JT;  2A
=2myv vyl 1———= .
cw) Uw &—JZS—Vman_ZiTia (A16)

ZA. (v — (1) )
XfEdS@( - (vi=w))f(svat).  (Al4) which gives the steady state conditi(2v).

Another estimate is given by representing the incident dis-
If the wall speed is much larger than other characteristidribution as a Gaussian

vy Vo U1 2 % *12
2n, Amlvw\/_f vx(l—mv*X*) e~ (" rv2)
2 1 * £\ A= (X +0¥)2 1 * *1\2 * *
=2nAmuwi | —= i +v3)e Cwtr) +[(vk+v3)2+2](erf(vl—v3)+1) . (A17)
2\m 2
|
Herevh=v, /vy, vl, 2T4;/m; characterizes the tempera- T,  4A
ture of the incident particles, angb=v3v,; characterizes Tt "3y UwliT 4T (A18)
their mean speed toward the wall. For larget v the con-
dition (A16) is recovered, while for smalby+v3 it be-  If Ty;~T; then the steady state condition for the HCS, con-
comes stant cooling rate, is recovered.
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