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Kinetic temperatures for a granular mixture
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An isolated mixture of smooth, inelastic hard spheres supports a homogeneous cooling state with different
kinetic temperatures for each species. This phenomenon is explored here by molecular dynamics simulation of
a two component fluid, with comparison to predictions of the Enskog kinetic theory. The ratio of kinetic
temperatures is studied for two values of the restitution coefficienta50.95 and 0.80, as a function of mass
ratio, size ratio, composition, and density. Good agreement between theory and simulation is found for the
lower densities and higher restitution coefficient; significant disagreement is observed otherwise. The phenom-
enon of different temperatures is also discussed for driven systems, as occurs in recent experiments. Differ-
ences between the freely cooling state and driven steady states are illustrated.
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I. INTRODUCTION

The dissipative nature of granular media is captured by
idealized fluid of smooth, inelastic hard spheres. When
lated and homogenized such a system rapidly approach
homogeneous cooling state~HCS! for which all time depen-
dence of the distribution function occurs through the te
perature. The latter, defined in the usual way via the aver
kinetic energy, decays in time~‘‘cooling’’ ! due to the inelas-
tic collisions. The existence of the HCS and associated c
ing rate is well established for a one-component system
theory @1#, Monte Carlo simulation@2#, and molecular dy-
namics simulation@3#. Recently, it has been shown from th
Enskog kinetic theory that a mixture of inelastic hard sphe
also has a HCS under the same conditions@4#. The condition
that all time dependence occurs through the temperature
quires that the cooling rates for the kinetic temperatures
each species must be the same. It follows directly that
kinetic temperatures are different for mechanically differe
species, reflecting a violation of the equipartition theor
valid for elastic collisions. A prediction for the ratio of tem
peratures in a binary mixture as a function of mass ratio, s
ratio, composition, density, and restitution coefficients w
obtained from an approximate solution to the Enskog eq
tions. The accuracy of this approximate result has been
cently confirmed by Monte Carlo simulation of the Ensk
equations@5#.

The objective here is to demonstrate the phenomenon
HCS and two temperatures in a broader context by molec
dynamics~MD! simulation for a binary mixture of inelasti
hard spheres. MD simulation avoids any assumptions in
ent in the kinetic theory or approximations made in solvi
the kinetic equations. It is shown here that MD simulati
supports the existence of a HCS for mixtures with differe
kinetic temperatures for each species but with a comm
cooling rate. The dependence of the temperature ratio
1063-651X/2002/66~4!/041301~10!/$20.00 66 0413
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mechanical properties and state conditions is found to b
good agreement with predictions of the Enskog kine
theory, except at high density and strong dissipation. In
latter case, significant quantitative deviations from the E
kog theory are observed but the concept of a HCS and
temperatures is preserved@6#.

The HCS can be given a time independent representa
by transformation to suitable dimensionless variables@7,8#.
In this form, it is similar to the steady state obtained f
homogeneously drivengranular fluids. The latter are obtaine
by adding stochastic sources to the kinetic equation or M
dynamics to do work on the system that compensates for
collisional cooling. The resulting homogeneous steady s
is qualitatively the same as the dimensionless HCS, but
quantitative differences are expected to make it closer tolo-
cally driven steady states observed in experiments on
brated granular media. Studies of driven states have b
extended to mixtures both theoretically@9# and experimen-
tally @10,11#. The comparisons of the temperature ratio f
the HCS mixture and that for the two types of homog
neously driven mixtures are given below. Their relationsh
to a locally driven system is also discussed.

The plan of the paper is as follows. In Sec. II, we sho
that the Liouville equation for a binary granular mixture su
ports a scaling solution describing the HCS. A transformat
to dimensionless variables allows to get the~constant! tem-
perature ratiog5T1(t)/T2(t) in terms of the parameters o
the mixture. An approximate evaluation of the temperat
ratio can be made from the Enskog kinetic theory, as
shown in Sec. III. In Sec. IV, the Enskog predictions a
compared with those obtained from MD simulations. Suc
comparison shows a quite good agreement for the lower d
sities considered, but significant discrepancies between
theory and the simulation appear for high density and str
dissipation. The existence of two temperatures in driv
granular mixtures@9,12,13# and its possible connection wit
©2002 The American Physical Society01-1
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recent experiments is analyzed in Sec. V. Finally, the pa
ends in Sec. VI with a brief discussion on the relevance
the results presented here.

II. HOMOGENEOUS COOLING STATE FOR A MIXTURE

The system considered is a binary mixture ofN1 andN2
smooth hard spheres of massesm1 andm2, and diameterss1
and s2. In general, collisions among all pairs are inelas
and are characterized by three constant restitution co
cientsa i j , which can be different for the three types of pa
collisions. The state of the system at timet is specified by the
N5N11N2 particle phase space densityr(G,t), which is a
solution to the Liouville equation@14#. In all of the follow-
ing, attention is restricted to spatially homogeneous state
this section, it is further assumed that the system is isola
The properties of primary interest are the overall tempera
e
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T(t) associated with the total kinetic energy, and the par
temperaturesTi(t) associated with the kinetic energies
each species. They are defined as

T~ t !5(
i 51

2

xiTi~ t !,
3

2
NiTi~ t !5K (

m51

Ni 1

2
mivm

2 ;tL . ~1!

The brackets denote a phase space average over the st
the system at timet and xi5Ni /N is the composition. The
time dependence ofT(t) and Ti(t) follows from the Liou-
ville equation that gives@4,14,15#

T21] tT52z, Ti
21] tTi52z i , ~2!

wherez i is the cooling rate associated with the partial te
peratureTi andz is the total cooling rate. They are given b
z5
1

T (
i 51

2

xiTiz i , ~3!

z i52
mi

3niTi
(
j 51

2 E dv1v1
2E dv2E dr12T̄i j ~r12,v1 ,v2! f i j

(2)~r12,v1 ,v2 ,t !. ~4!

Here, ni is the number density of speciesi, r12 is the relative position of the two particles, andf i j
(2)(r12,v1 ,v2 ,t) are the

reduced two-particle distribution functions for a particle of typei and one of typej, obtained fromr(G,t) by integrating over
degrees of freedom for all other particles. The binary collision operators are defined by@14,15#

T̄i j ~v1 ,v2 ,r12!5s i j
2 E dŝ Q~ŝ•g12!~ŝ•g12!@a i j

22d~r122s!bi j
212d~r121s!#, ~5!
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wheres i j 5(s i1s j )/2, ŝ is a unit vector directed along th
line of centers from the sphere of speciesi to that of species
j at contact,Q is the Heaviside step function, andg125v1

2v2. Also, bi j
21 is a substituting operator,bi j

21F(g12)
5F(bi j

21g12), which changes any function ofv1 and v2 to
the same function of the restituting velocitiesv18 andv28 :

v185v12m j i ~11a i j
21!~ŝ•g12!ŝ,

v285v21m i j ~11a i j
21!~ŝ•g12!ŝ, ~6!

wherem i j 5mi /(mi1mj ). Upon writing Eqs.~4! and~5! we
have taken into account that for an homogeneous system
spatial dependence off i j occurs only throughr12.

In general, all three temperatures and associated coo
rates will be different and depend on the initial preparati
The time evolution of the ratio of the two partial temper
turesg(t)5T1(t)/T2(t) follows from the second equality o
Eq. ~2!:

] t lng5z22z1 . ~7!
he

ng
.

For a system with elastic collisions,r(G,t) rapidly ap-
proaches to the Gibbs distribution with a single constant te
perature. This requiresz15z2, andTi}T in the Gibbs state.
The form of the velocity distribution functions and the co
stancy of the temperature then givesT15T25T and z1
5z250. This equality of the temperatures is the equipa
tion theorem for classical statistical mechanics. The van
ing of the cooling rates is a consequence of the system
proaching towards a steady state.

If the collisions are inelastic, the system still approach
rapidly a special state known as the HCS. As with the Gib
state, the velocities scale with the temperature for a dim
sionless universal distribution of the form

rHCS~G,t !5@ l v~ t !#23NrHCS* ~$r i j* ,vi* %!. ~8!

Here r i j* 5r i j /l denotes the dimensionless relative coor
nate for particlesi and j, andl is some appropriate charac
teristic length scale such as the mean free path. The dim
sionless velocities vi* 5vi /v0(t) are scaled relative
to the thermal velocity defined by v0(t)
5A2T(t)(m11m2)/m1m2. This scaling has the same con
sequences as described above for elastic collisions:Ti(t)
1-2
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}T(t), g(t)→const, and soz15z2. However, Eq.~8! is not a
steady state since the cooling ratesz i do not vanish. Also, the
form of rHCS* is not the same as for the Gibbs state so ther
no a priori reason to expect that the temperatures should
equal@4#. In fact, as indicated below, they are equal only
the limit of mechanically equivalent particles or elastic c
lisions.

The simplest test of the evolution towards a HCS with
assumed velocity scaling is the approach ofg(t) to a con-
stant value. This is illustrated in Fig. 1 from MD simulatio

FIG. 1. Time evolution of g(t)5T1(t)/T2(t) for f50.1,
s1 /s25f1 /f251, m1 /m258, and two values ofa: a50.8 and
a51.
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using 1000 particles of the same size and composition,
with the mass ratiom1 /m258. The total solid volume frac-
tion is f50.1 and all coefficients of restitution are equa
Here,f5f11f2, where

f i5
1

6
pnis i

3 ~9!

is the species volume fraction of the componenti. We con-
sider two values of the restitution coefficient:a50.8 anda
51. We observe that in the elastic case (a51) the mixture
approaches the Gibbs state with the temperature ratiog(t)
→1, as expected from equipartition. In the inelastic ca
(a50.8), g(t) approaches a constant value (g.2 with fluc-
tuations less than 5%! after about 10 collisions per particle.
is seen that the HCS for inelastic collisions is approached
the same time scale as the Gibbs state for elastic collisi
Further details of the MD simulation are discussed below

III. ENSKOG KINETIC THEORY

The kinetic temperatures defined by Eq.~1! can be given
in an equivalent form in terms of the one-particle reduc
distribution functionf i

(1)(v,t) as

Ti~ t !5
1

3

mi

ni
E dv v2f i

(1)~v,t !. ~10!

The one-particle reduced distribution functionf i
(1)(v,t)

obeys the exact first Bogoliubov-Born-Green-Kirkwoo
Yvon ~BBGKY! hierarchy equations
] t f i
(1)~v1 ,t !5(

j 51

2 E dv2E dr12T̄i j ~r12,v1 ,v2! f i j
(2)~r12,v1 ,v2 ,t !. ~11!
n in
es
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n
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To be more specific about the dependence of the temp
tures on the parameters of the mixture, it is sufficient
specify the reduced distribution functionsf i j

(2)(r12,v1 ,v2 ,t)
in Eq. ~11!. This also determines the cooling rates from E
~4!. These distribution functions occur only in the combin
tion T̄i j f i j

(2) , so knowledge off i j
(2) is required only for pairs

of particles at contact and only on the precollision hem
sphere. A practical approximation for these conditions is
tained by neglecting velocity correlations and expressing
two-particle distribution functions in terms of the singl
particle distribution functions,

f i j
(2)~r12,v1 ,v2 ,t !→ f i

(1)~v1 ,t ! f j
(1)~v2 ,t !x i j ~r12,t !.

~12!

The single-particle distributions are independent of posit
since only homogeneous states are considered here. The
tial correlation functionx i j (r12,t) is evaluated at contact an
its choice is given below. The one-particle distribution fun
ra-
o

.
-

-
-
e

n
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-

tions can be determined by using this same approximatio
the exact first BBGKY hierarchy equations, which becom

] t f i
(1)~v1 ,t !5(

j 51

2

Ji j @v1u f i
(1)~ t !, f j

(1)~ t !#, ~13!

where Ji j @ f i
(1) , f j

(1)# is the Enskog collision operator@14#.
These are now closed equations forf i

(1) and constitute the
Enskog kinetic theory for the granular binary mixture.

For the HCS the scaling form~8! implies a similar scaling
form for f i

(1)(v1 ,t),

f i
(1)~v,t !5niv0

23~ t ! f i* ~v* !. ~14!

Furthermore,x i j (r125s i j ,t)→x i j [const since all time de-
pendence occurs through the velocity scaling. For pract
purposes, and to agree with the equilibrium limit for elas
collisions,x i j is taken to be the equilibrium pair correlatio
function. A good approximation is given by the Carnaha
Starling form@16#
1-3
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x i j 5
1

12f
1

3

2

j

~12f!2

s is j

s i j
1

1

2

j2

~12f!3 S s is j

s i j
D 2

,

~15!

where j5p(n1s1
21n2s2

2)/6. Comparison with compute
simulations for binary molecular hard sphere mixtures h
shown that the Carnahan-Starling equation~15! is accurate in
most of the fluid region, although it fails for high densitie
and for large diameter ratios@17#. Given the values consid
ered in our simulations, we expect that the approximat
~15! turns out to be quite accurate to evaluate the pair co
lation functionx i j . In terms of the reduced distributionsf i* ,
the Enskog kinetic equations become

z i*

2

]

]v*
•~v* f i* !5(

j 51

2

Ji j* @v* u f i* , f j* #, ~16!

wherez i* 5z i /nv0s12
2 andJi j* 5(v0

2/nnis12
2 )Ji j are given, re-

spectively, by

z i* @ f i* , f j* #52
2

3
l i (

j 51

2 E dv1* v1*
2Ji j* @ f i* , f j* #, ~17!

Ji j* @v1* u f i* , f j* #5xjx i j S s i j

s12
D 2E dv2* E dŝ Q~ŝ•g12* !

3~ŝ•g12* !@a i j
22f i* ~v18* ! f j* ~v28* !

2 f i* ~v1* ! f j* ~v2* !#, ~18!

whereg12* 5g12/v0 , l i5(v0 /v0i)
25T/(Tim j i ), with j Þ i , is

the square of the ratio of the thermal velocity to that
speciesi, andv0i5A2Ti /mi .

In the dimensionless form~16! the Enskog equations ar
time independent. The pair of coupled equations~16! must
be solved self-consistently with the expressions for the co
ing rates in Eq.~4! to determinef i* and z1* 5z2* 5z* . The
temperatureT(t) is then obtained from the known coolin
rate by solving the first of Eqs.~2!, and the distribution func-
tions f i

(1)(v,t) are fully determined. The kinetic temperatu
for each species is obtained from Eq.~16! as

Ti~ t !5T~ t !
2

3
m j i

21E dv* v* 2f i* ~v* !. ~19!

As anticipated,Ti(t)}T(t) in the HCS andg5T1 /T2 be-
comes

g5
m12

m21

E dv* v* 2f 1* ~v* !

E dv* v* 2f 2* ~v* !

. ~20!

This is essentially the approach used in the numerical Mo
Carlo solution@5# to the Enskog equation.

In practice, only approximate solutions for the HCS a
possible~an exception is a recent exact result for a on
dimensional Maxwell model@18#! and a different approach i
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followed. First, the solution is represented as a series in
locity polynomials, with the leading terms given by

f i* ~v* !→S l i

p D 3/2

e2l iv* 2F11
ci

4 S l i
2v* 425l iv* 21

15

4 D G .
~21!

Thus, the weight function~Gaussian! for each species is cho
sen to be scaled relative to the thermal velocity for that s
cies, introducing explicitly the unknown species tempe
tures. The coefficientsci measure the deviation off i* from
the chosen reference Gaussians. The cooling rates are
calculated as explicit functions ofl i and ci from Eq. ~17!.
With these known, the Enskog equations can be solved
determineci as functions ofl i by substitution of Eq.~21!
into the Enskog equations, taking thev4 moment of those
equations, and retaining terms up through linear inci . Fi-
nally, thel i are determined from the consistency conditi
for the HCS,z1* 5z2* . The detailed results forci andl i as
functions of the fluid parameters are given in Refs.@4# and
@5# and will not be repeated here.

IV. COMPARISON OF THEORY AND SIMULATION

The approximation~21! provides detailed predictions fo
the species temperatures as functions of the mass r
size ratio, composition, density, and restitution coefficien
The quality of this approximate solution to the Enskog eq
tions has been recently confirmed by direct Monte Ca
simulation of those equations over a wide range of
parameter space@5#. Specifically, the parameter spac
over which the solution~21! has been verified is the mas
ratio m1 /m2, the concentration ration1 /n2, the ratio of di-
ameterss1 /s2, the reduced densityns12

3 , and the~com-
mon! restitution coefficienta[a115a225a12. However,
uncertainties remain regarding the accuracy of the Ens
equations themselves. An appropriate means to study
concept of the HCS and the associated different partial t
peratures, as well as to study the domain of validity of t
Enskog kinetic theory is via MD simulations. Since the p
rameter space here is quite large the tests of the theory
concepts are quite stringent.

Two different values of the solid volume fractionsf have
been considered here,f50.1 andf50.2, both representing
a moderately dense fluid. All coefficients of restitution we
set equal and two values considered,a50.8 anda50.95,
both representing moderately strong dissipation. The te
perature ratiog in the HCS has been studied for three cas
in each state. In the first case~case I! g is determined as a
function of the mass ratiom1 /m2 for s1 /s25f1 /f251.
The second case~case II! determinesg as a function of size
ratio s1 /s2 for m1 /m25f1 /f251, while the third case
~case III! determinesg as a function of compositionf1 /f2
for m1 /m258 ands1 /s252.

The granular system under consideration does not con
external force fields, and thus the particles travel in straig
line trajectories between collisions. Correspondingly,
event-driven algorithm is employed in the MD simulation
The simulated particles are modeled as inelastic, frictionl
1-4
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hard spheres~i.e., collisions are both binary and instant
neous! moving in a three-dimensional space with stand
periodic boundaries. The initial particle velocities are u
formly distributed about a zero mean, regardless of the
ticle size. These velocities are then adjusted to ensure
the net system momentum is zero.

As indicated in Fig. 1, the system reaches a steady v
for the temperature ratiog within 10 collisions per particle
for a wide class of initial conditions. However, it is know
that the HCS is unstable to long wavelength perturbation
that spontaneous deviations from the HCS occur at l
times. To assure thatg is measured in the HCS, the temper
ture T(t) is monitored as a function of time to determine
the predicted cooling from the scaling form~8! ~Haff’s law!
is maintained@19#. In order to keep the computational tim
reasonable for each of the simulations~about 1 h!, the total
number of particles was kept constant atN51000 for all
simulations. Data from the first 10 collisions per particle~or
10 000 total collisions! were used to determine the slope
T(t). Specifically, the ln@T(t)/T(0)# was sampled 1000 time
during this initial portion of the simulation. Somewhat su
prisingly, a smooth linear decrease in ln@T(t)/T(0)# was ob-
served throughout the 1000 samples, and a linear regres
analysis was employed to evaluate the slope of the Ha
law plot. Following evaluation of the slope of ln@T(t)/T(0)#,
collection of theg5T1(t)/T2(t) data commenced. This dat
collection period involved as many as 200 additional co
sions per particle~or 200 000 total collisions! including
50 000 equally spaced measurements ofg. The phrase ‘‘as
many as’’ refers to the fact that the data collection wou
cease~with fewer than 50 000 measurements of the ene
ratio! if the measured value of ln@T(t)/T(0)# deviated from the
expected value of ln@T(t)/T(0)# by more than 5%. Violation
of the Haff’s law restriction occurred frequently when th
mass ratiom1 /m2 was greater than 4. Additionally, simula
tions of equal mass particles (m1 /m251) violated the Haff’s
law restriction whena50.8 andf50.2.

Figure 2 shows the results for case I,g as a function of
mass ratio. The symbols represent the simulation data w

FIG. 2. Plot of the temperature ratioT1 /T2 as a function of the
mass ratiom1 /m2 for s1 /s25f1 /f251, and two different values
of a: a50.95 ~solid line and circles! and a50.8 ~solid line and
triangles!. The lines are the Enskog predictions and the symb
refer to the MD simulation results. The open~solid! symbols corre-
spond tof50.1 (f50.2).
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the circles are fora50.95 and the triangles are fora50.8.
In addition, open~solid! symbols correspond tof50.1 (f
50.2). The simulation values reported represent the ave
from three identical simulations, with a standard deviati
typically less than 3%. The Enskog prediction of the prec
ing section is given by the solid lines~the theory does no
predict any dependence onf in this case!. The agreement
between the theory and the simulation is seen to be q
good ata50.95, over the whole range of mass ratios. T
agreement is also quite good ata50.8 andf50.1. How-
ever, systematic deviations from the Enskog theory for la
mass ratios are obtained in the simulations atf50.2.

Figure 3 shows the results for case II,g as a function of
size ratio. The notation is the same as in Fig. 2, where n
the solid line refers tof50.1 while the dashed line is fo
f50.2. The agreement for botha50.95 anda50.8 is quite
good atf50.1, except for the largest size ratio ata50.8.
The density dependence of the theory is weaker than
from the simulation, and large differences are observed
f50.2.

Figure 4 shows the results for case III,g as a function of
composition. We observe that both the theory and the sim
lation predict a very weak influence of composition on t
temperature ratio. In addition, the trends are similar to th
of Figs. 2 and 3. Good agreement is obtained fora50.95 at
both f50.1 andf50.2. At stronger dissipation there is
strong density dependence in the simulation that is not re
duced by the theory.

V. DRIVEN SYSTEMS AND EXPERIMENTS

The existence and details of different temperatures
each species in a HCS is now well established by kine
theory and simulation. The related experiments@10,11# and
simulations@12,13# on driven steady states also show diffe
ent temperatures, but the detailed dependence on the co
parameters appears to be different. The driven steady s
are achieved from external forces that do work at the sa
rate as collisional cooling. In the experiments this is acco

ls

FIG. 3. Plot of the temperature ratioT1 /T2 as a function of the
size ratios1 /s2 for m1 /m25f1 /f251, and two different values
of a: a50.95 ~lines and circles! anda50.8 ~lines and triangles!.
The lines are the Enskog predictions and the symbols refer to
MD simulation results. The solid~dashed! lines correspond tof
50.1 (f50.2), while the open~solid! symbols correspond tof
50.1 (f50.2).
1-5
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plished by vibrating the system so that it is locally driven
the walls. Far from these walls a steady state is stud
whose properties are presumed to be insensitive to the de
of the driving forces. The velocities of the particles can
measured using high speed photography@10# or positron
emission particle tracking@11#. The objective of this section
is to explore similarities and differences between the te
perature ratios for a binary mixture in the HCS and in
driven steady state.

As a first analysis, ahomogeneouslydriven steady state is
considered. This does not correspond directly to any exp
mental driving source, but has been considered extensi
as a representation of driven systems for the one-compo
fluid @20#. In this case a uniform external nonconservat
force, frequently referred to as a ‘‘thermostat,’’ is applied
compensate for collisional cooling. Two types of thermost
are considered here. One is a deterministic Gaussian the
stat widely used in nonequilibrium molecular dynami
simulation for the molecular fluids@21#. The force is similar
to a Stokes law drag force, linear in the velocity, but with t
opposite sign so that it heats rather than cools the sys
The ‘‘friction’’ constant can be chosen to exactly compens
for the collisional cooling. At the level of kinetic theory, th
introduction of such an external force leads to a steady s
equation that isidentical to Eq. ~16!. It is easily confirmed
that the same is true at the level of the Liouville equation
the appropriate dimensionless variables. Thus, there is
exact correspondence between the HCS and this typ
driven steady state and, in particular, the dependence ofg on
the control parameters is the same.

A second method of driving the system homogeneousl
by means of a stochastic Langevin force representing Ga
ian white noise@22#. This force for each species is written a
Fi5miji , where the covariance of the stochastic accele
tion is

^j ia~ t !j j b~ t8!&52Dd i j dabd~ t2t8!. ~22!

FIG. 4. Plot of the temperature ratioT1 /T2 as a function of
compositionf1 /f2 for m1 /m258, s1 /ws252, and two different
values of a: a50.95 ~lines and circles! and a50.8 ~lines and
triangles!. The lines are the Enskog predictions and the symb
refer to the MD simulation results. The solid~dashed! lines corre-
spond tof50.1 (f50.2), while the open~solid! symbols corre-
spond tof50.1 (f50.2).
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Note that the covariance for the random accelerations
taken to be the same for each species@9,23#. This force in-
duces a diffusion in the velocity space, with diffusion coe
ficient D. At the level of kinetic theory this leads to an add
tional source represented by a Fokker-Planck collis
operator, in addition to the Enskog collision operator. T
steady state Enskog equations then take the form

05(
j

Ji j @vu f i
(1) , f j

(1)#1DS ]

]v D 2

f i
(1) . ~23!

Multiplying by miv i
2/2 and integrating gives the relationsh

of D to the cooling ratesz i , i.e., D5z iTi /2mi . This in turn
implies the steady state condition

z1

T1

m1
5z2

T2

m2
. ~24!

The cooling rates are no longer equal, as for the HCS,
the dependence of the temperatures on the control param
will be different as well.

The procedure for determining the temperatures for
stochastically driven steady state is the same as that
scribed in Sec. III. The steady state distribution is rep
sented as an expansion of the form~21! and the coefficients
are now determined from moments of the set~23!. The cool-
ing rates are then determined from this solution using
~17!, and the condition~24! gives an equation for the tem
perature ratiog. Figures 5, 6, and 7 illustrate the differenc
between the HCS and the stochastic steady state fora50.6
and 0.8. The solid lines are the results for the HCS, while
dashed lines are the results for the driven steady state.
dependence ofg on mass ratio is shown in Fig. 5 forf50
andf1 /f25s1 /s251. This dependence is seen to be co
siderably stronger in the driven state. The dependence
composition is shown in Fig. 6 forf50, m1 /m252, and
s1 /s251. Finally, the dependence on overall packing fra
tion f is shown in Fig. 7 for f1 /f251 and m1 /m2
5s1 /s252. In this last case, the effect of increased dens
is greater for the HCS than for the driven steady state.

ls

FIG. 5. Plot of the temperature ratioT1 /T2 as a function of the
mass ratiom1 /m2 for f50, s1 /s25f1 /f251, and two different
values ofa: a50.8 anda50.6. The solid lines are the results fo
the HCS, while the dashed lines are the results for the driven ste
state achieved from the stochastic thermostat.
1-6
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KINETIC TEMPERATURES FOR A GRANULAR MIXTURE PHYSICAL REVIEW E66, 041301 ~2002!
The HCS and homogeneously driven steady states
seen to be qualitatively similar, with only quantitative diffe
ences. It remains to understand their relationship to loc
driven wall forces. An example is described for the Bol
mann equation in the Appendix. There the boundary con
tion is a sawtooth vibration of one wall such that every p
ticle encountering the wall has a reflected speed increase
twice the velocity of the wall in the component normal to t
wall. The steady state condition is considerably more co
plex than for the HCS or the homogeneously driven ste
states. In the limit that the wall velocity is large compared
the thermal velocities of each species, the condition~24! is
recovered. This suggests that the results obtained from
condition are plausible first approximations for qualitati
comparisons with experimental results@9#. However, the de-
tailed nature of the driven state requires further character
tion before quantitative conclusions can be drawn. This
suggested by the study of a driven state in the absenc
gravity @24# where the system is found to be well describ
by hydrodynamics away from the wall, but the steady stat
strongly inhomogeneous.

FIG. 6. Plot of the temperature ratioT1 /T2 as a function of
compositionf1 /f2 for f50, m1 /m252, s1 /s251, and two dif-
ferent values ofa: a50.8 anda50.6. The solid lines are the
results for the HCS, while the dashed lines are the results for
driven steady state achieved from the stochastic thermostat.

FIG. 7. Plot of the relative temperature ratiog(a,f)/g(a,0) as
a function of the total solid volume fractionf for m1 /m2

5s1 /s252, f1 /f251, and two different values ofa: a50.8
anda50.6. The solid lines are the results for the HCS, while t
dashed lines are the results for the driven steady state achieved
the stochastic thermostat.
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VI. DISCUSSION

The primary results of this study are twofold. First, th
MD simulations confirm the rapid approach to a HCS w
two kinetic temperatures determined by a common cool
rate. This occurs over a wide range of densities, composit
and mass and size ratios, for both moderate and strong
sipation. The second result is confirmation of the Ensk
kinetic theory to provide a quantitative description of th
phenomenon for the lower densities and weaker dissipa
cases. This includes densities well outside the Boltzm
limit and applies throughout the parameter space of mech
cal properties. The analysis here is a test of the Enskog
diction for the cooling rates, which are essentially transp
properties~collision rates!. The good agreement obtained
further testimony to the utility of this remarkable equatio
for fluids with elastic and inelastic collisions, including mix
tures.

The failure of the Enskog theory at high densities is e
pected from experience with normal fluids. This is due
multiparticle collisions, including recollision events~ring
collisions!. The latter are expected to be stronger for flui
with inelastic collisions where the colliding pairs tend
become more focused. It appears that the range of dens
for which the Enskog description applies decreases with
creasing dissipation. This is the case observed here and
elsewhere for the self-diffusion coefficient@8#. The specific
mechanism responsible for the large discrepancies at
densities and its quantitative prediction remains an o
problem.

The magnitude of the difference between the two kine
temperatures generally increases as the mechanical d
ences increase, although the dependence on volume fra
is weak. Also, there is a significant dependence on the ine
ticity and total volume fraction. The experiments in Ref.@10#
show a similar strong dependence on mass ratio, but no
nificant dependence on inelasticity, total density, or com
sition. The detailed correspondence between the sim
model homogeneous states considered here and the lo
driven states of experiments needs refinement, although
erally the same trends are observed@9#.

The hydrodynamics for binary mixtures of inelastic ha
spheres has been derived recently, including the effect
two kinetic temperatures@25#. Although only the overall
temperature associated with both species serves as a h
dynamic field, the transport coefficients depend on the te
perature ratiog. Since the latter is a function of the compo
sition and density, there are additional contributions to
transport coefficients. Differences as large as 50% are fo
for some coefficients.
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APPENDIX: LOCAL BOUNDARY CONDITIONS

The Enskog equations with boundary conditions can
written as@26#

~] t1v1•“2TWi! f i
(1)~r ,v1 ;t !5(

j
Ji j @v1u f i

(1)~ t !, f j
(1)~ t !#.

~A1!

Here, TWi describes interactions of particles of typei with
the boundaries

TWif i
(1)~r ,v1 ;t !5E

J
dsd~r2s!

3H E dv8P~v1 ,v8!un̂•v8u f i
(1)~r ,v8;t !

2Q~2n̂•v1!un̂•v1u f i
(1)~r ,v1 ;t !J .

~A2!

This is similar to the usual Boltzmann collision operator w
the first term representing a gain in the population of p
ticles with velocityv1 due to collisions with the wall, and th
second term representing a corresponding loss. The prob
ity density for a velocityv1 after the collision with the wall,
given an incident velocityv8 has the form

P~v1 ,v8!5Q~ n̂•v1!K~v1 ,v8!Q~2n̂•v8!. ~A3!

The two Q functions characterize the incident particles
directed toward the wall and the reflected particle direc
04130
e

r-

il-

s
d

away from the wall, where the normaln̂ is directed toward
the interior of the system. The kernelK(v8,v1) characterizes
the change in the half space velocity distributions at the s
face ~i.e., outgoing distribution is a linear functional of th
incoming distribution!. Particle number conservation re
quires

E dv1 P~v1 ,v8!5Q~2n̂•v8!. ~A4!

As an illustration, the form ofK(v,v1) for elastic specular
collisions with a wall at rest is

Ks~v1 ,v8!5d„v12v812~ n̂•v8!n̂…. ~A5!

The surface domainJ is time dependent, representin
vertical oscillations. This can be handled using a sawto
form for the driving, such that every particle encounters
wall moving into the system at velocityvw5vwn̂. Assume
the amplitude of the vibration is small, so that the displa
ment of the wall can be neglected. Then, it is reasonabl
choose specular collisions in the local Galillean frame
which the wall is at rest:

P~v1 ,v8!5Q„n̂•~v1Àvw!…K~v1 ,v8!Q„2n̂•~v82vw!…,
~A6!

Ks~v1 ,v8!5d~v12v812„n̂•~v82vw!…n̂!. ~A7!

The wall collision operator becomes
TWi f i
(1)~r ,v1 ;t !5E

J
dsd~r2s!HQ„n̂•~v12vw!…E dv8d„v12v812n̂•~v82vw!n̂…Q„2n̂•~v82vw!…

3un̂•~v82vw!u f i
(1)~r ,v8;t !2Q„2n̂•~v12vw!…un̂•~v12vw!u f i

(1)~r ,v1 ;t !J . ~A8!

The change in the kinetic energy due to the boundary conditions is

E drE dv1

1

2
miv1

2TWi f i
(1)~r ,v1 ;t !

5E
J

dsE dv1@ei8~v1!2ei~v1!#un̂•~v12vw!uQ„2n̂•~v12vw!…f i
(1)~s,v1 ;t !, ~A9!

whereei(v1) andei8(v1) are the kinetic energies for particles coming into and leaving the surface. They are given by

ei~v1!5
1

2
miv1

2 , ~A10!
1-8
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ei8~v1!5E dv Q„n̂•~v2vw!…
1

2
miv

2d„v2v112n̂•~v12vw!n̂… ~A11!

5
1

2
mi„v122~ n̂•v12vw!n̂…2Q„2n̂•~v12vw!…. ~A12!
sti
is-
Thus, one gets

ei8~v1!2ei~v1!52mivw
2 S 12

n̂•v1

vw
D . ~A13!

Here,vw is the speed of the wall, taken along the normaln̂.
The rate of energy change due to the wall becomes

E drE dv1

1

2
miv1

2TWi f i
(1)~r ,v1 ;t !

52mivw
3 E dv1S 12

n̂•v1

vw
D 2

3E
J

dsQ„2n̂•~v12vw!…f i
(1)~s,v1 ;t !. ~A14!

If the wall speed is much larger than other characteri
-

04130
c

velocities 12n̂•v/vw→1, and so Eq.~A14! becomes ap-
proximately

E drE dv1

1

2
miv1

2TWi f i
(1)~r ,v1 ;t !→mivw

3 niA,

~A15!

where A is the area of the wall andni is the density of
incident particles of speciesi. The rate of change of the
temperature is then

]Ti

]t
5

2A

3V
mivw

3 2z iTi , ~A16!

which gives the steady state condition~24!.
Another estimate is given by representing the incident d

tribution as a Gaussian
2niAmivw
3 1

Ap
E

2`

vw /v0i
dvx* S 12

v1i

vw
vx* D 2

e2(v* 1v2* )2

52niAmivwv1i
2 S 1

2Ap
~vw* 1v2* !e2(vw* 1v2* )2

1
1

2
@~vw* 1v2* !212#„erf~vw* 2v2* !11…D . ~A17!
n-
Herevw* 5vw /v1i , v1i
2 52T1i /mi characterizes the tempera

ture of the incident particles, andv25v2* v1i characterizes
their mean speed toward the wall. For largevw* 1v2* the con-
dition ~A16! is recovered, while for smallvw* 1v2* it be-
comes
]Ti

]t
5

4A

3V
vwT1i2z iTi . ~A18!

If T1i'Ti then the steady state condition for the HCS, co
stant cooling rate, is recovered.
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